

STAINLESS STEEL ELECTRIC MOTORS & GEAR MOTORS

www.abi.nl Made in Holland

Managing Motion

INDEX

Stainless steel electric motors	2
IP69K IE3 efficiency TCO and machine downtime	2 2 2
Product range	3/4
Stainless steel motors Brake / Encoder Stainless steel worm gear motors Stainless steel planetary gearboxes Certifications	3 4 4 4 4
Specifications	5/9
Non-ventilated motor (TENV) Water cooled motor (TELC) Worm Gear Motor Planetary Gearbox (PRS80) Planetary Gearbox (PRS120)	5 6 7 8 9
Dimensions	10/14
Motor Water cooled motor Brake/Encoder IEC Flange Worm Gear Motor Planetary Gearbox Maximum Radial Force	10 10 10 11 12 13
Radial and Axial forces	14

Lean manufacturing is applied in the assembly department.

ABI's production facility is equipped with advanced CNC machinery.

Stainless steel electric motors

ABI b.v., located in Haarlem, Holland, has been developing and manufacturing electric motors and gear motors since 1955. Responding to market needs, ABI has developed a completely stainless steel aseptic electric motor, especially designed for markets dealing with high standards in hygiene and cleaning. In the past years these motors have been further developed into the current full range of stainless steel products.

The range is characterized by high quality and reliability. Years of experience, market feedback and optimization

The range is characterized by high quality and reliability. Years of experience, market feedback and optimization of the design ensure that our motors live up to your expectations, even in the toughest of environments.

IP69K

The motors are manufactured out of AISI 304, DIN 1.4301 and the shaft out of AISI 420, DIN 1.4021. The protection class is IP69K; which means that the motors are pressure washer proof according to DIN-40050. The maximum water pressure is 100bar, with a maximum temperature of 80°C. This assures effortless high pressure cleaning. Stainless steel motors often fail because of moisture (condensation) which builds up in the motor over time. This is caused by a combination of temperature changes, wash downs at different temperatures and a high humidity environment. Specially designed seals and pressure proof chambers in the ABI motors prevent this moisture build-up.

Fields of application for these motors are environments which have to conform to the HACCP regulations as well as situations with special requirements regarding hygiene and cleaning or extremely humid environments. For example: food and dairy production, meat and poultry processing, carwashes and the pharmaceutical industry.

IE3 efficiency

The stainless steel motors produced by ABI meet the highest standard in efficiency, the IE3 standard (premium efficiency). Reducing energy consumption by the application of highly energy efficient motors is only one of the advantages of stainless steel motors. Due to the higher efficiency, heat production is reduced, offering large advantages in safety and applicability.

TCO and machine downtime

By choosing an ABI stainless steel motor, you contribute to a lower energy consumption, and the motor can offer you a considerable reduction in costs over time.

In the long run 'Total Cost of Ownership' is more important than the initial purchase price of a machine. In tough conditions, where corrosion or wear by moisture occurs, it has been proven that an IP69K motor (our ABI quality) has a much longer life span than a lesser quality motor. Next to the cost reductions by greatly reducing machine downtime, this also cuts down on replacement costs of the motors themselves.

Because of high efficiency and a longer life span, the ABI stainless steel motors add to a much lower TCO. The ABI sales engineers are happy to help you with your TCO calculations.

Managing Motion

Product range

ABI produces the following product range

Stainless steel motors, 0.18-4kW, in 2, 4, 6 and 8 pole versions. Available in B14, B5 and B3 mounting positions, both in non-ventilated (TENV) and water cooled (TELC) designs.

Stainless steel worm gear motors in 2 sizes, up to a maximum torque of appr. 80Nm, in the most common ratios (from 3.6:1 to 75:1).

Stainless steel planetary gearboxes with IEC mounting position. Type PRS80 (up to 130Nm) and type PRS120 (up to 260Nm). These completely sealed (IP69K) stainless steel planetary gearboxes can be attached to IEC motors.

Motors in different sizes

The motors are characterized by a very smooth appearance, which leaves no areas where germs or dirt can collect. The mounting dimensions are according to the IEC72 standard construction forms B5 or B14. Different shaft and/or flange dimensions are available.

ABI also produces water cooled stainless steel motors. An advantage of the application of water cooling is the increased manageability of motor temperature, thereby reducing the motor's outer temperature. A second reason for applying water cooling is the significant increase in power output at a S1-100% duty cycle. This option is available on the MRS14, MRS18 and MRS20 motors. The dimensions are similar to the standard motors, except for the outer diameter of the motor housing. Please contact one of our engineers for

- more information.
- Round smooth housing AISI 304
- Available in 2, 4, 6 and 8 poles
- 3-phase motor according to IEC34
- Mounting type B5, B14 or B3 according to IEC72
- Motor enclosure protection class IP69K
- Non-ventilated motors (TENV) or water cooled motors (TELC)
- Integrated thermal protector
- UL / CSA certified

cooled motor

Brake / Encoder

ABI is unique in the way it integrates holding brakes and/or encoders into the motors, without making concessions in protection class. Due to the modular setup of these options, we are able to adapt to our customers' wishes quickly and flexibly.

- Fully integrated
- Brake in 24Vdc or 230Vac
- Encoder TTL, HTL in 2 1024 pulses/rev.

Stainless steel worm gear motors

The worm gearboxes are completely constructed from casted AISI 304, and they are available in two sizes. WRSH2 has output torques up to 20Nm and WRSH3 has a maximum output torque of 80Nm. The gearbox design ensures a smooth surface and easy cleaning to avoid areas where contamination can build up over time.

Reduction ratios are available from 3.6:1 to 75:1. The worm gear motors are manufactured with a hollow output shaft. Single or double solid output shafts are available on request. The construction is adapted for the use of a torque arm or foot mounting (B3) with tapped holes. For all types of gear motors Food Grade Oil is used.

Worm gear motor

Stainless steel planetary gearboxes

ABI has a full range of planetary gearboxes, type PRS. These fully enclosed (IP69K) stainless steel planetary gearboxes are prepared for connection to IEC motors. The planetary gearboxes are available in 2 sizes; PRS80 has a maximum output torque of 130Nm and PRS120 has output torques up to 260Nm. Reduction ratios are available from 3:1 to 512:1.

Planetary gearbox

Certifications

NON-VENTILATED MOTOR (TENV)

Туре	IEC Size	Power [kW]	Duty Cycle	n nom [RPM]	T nom [Nm]	Efficiency	Power- factor cos φ	I nom 400V [A]	Starting Torque Ts/Tn	Starting Current Is/In	Max Torque Tm/Tn
MRS Serie	es, 2-poles	, 3-phase									
MRS14a-2	71	0.18	S1-100%	2935	0.59	57.6%	0.64	0.69	9.56	8.12	9.73
MRS14b-2	71	0.25	S1-100%	2910	0.82	65.9%	0.73	0.81	6.83	6.91	6.95
MRS14d-2	71	0.37	S3-60%	2880	1.23	70.6%	0.79	0.96	4.56	5.83	4.65
MRS18a-2	80	0.37	S1-100%	2965	1.19	70.7%	0.65	1.16	7.89	11.72	10.32
MRS18b-2	80	0.55	S1-100%	2949	1.78	76.8%	0.75	1.37	5.28	9.93	6.91
MRS18c-2	80	0.75	S1-100%	2933	2.44	80.7%	0.82	1.65	3.85	8.24	5.04
MRS20a-2	90	0.9	S1-100%	2963	2.90	82.7%	0.75	2.1	6.79	13.62	9.31
MRS20b-2	90	1.1	S1-100%	2956	3.55	83.0%	8.0	2.4	5.54	11.92	7.60
MRS20c-2	90	1.5	S1-100%	2941	4.87	85.8%	0.85	3	4.04	9.53	5.54

MRS Series	. 4-po	les. 3-	phase
THING SCHOOL	, - PC	, .	Pilase

MRS14a-4	71	0.18	51-100%	1459	1.18	65.9%	0.55	0.73	5.94	6.44	6.54
MRS14b-4	71	0.25	S1-100%	1446	1.65	71.7%	0.64	0.79	4.24	5.95	4.66
MRS14d-4	71	0.37	S3-60%	1421	2.49	73.5%	0.75	0.96	2.82	4.90	3.10
MRS18a-4	80	0.37	S1-100%	1472	2.40	72.6%	0.49	1.47	7.08	7.69	7.79
MRS18b-4	80	0.55	S1-100%	1460	3.60	78.1%	0.61	1.66	4.73	6.81	5.20
MRS18c-4	80	0.75	S1-100%	1445	4.96	82.5%	0.7	1.93	3.43	5.86	3.77
MRS18d-4	80	0.9	S3-25%	1432	6.00	83.0%	0.75	2.17	2.83	5.21	3.12
MRS20a-4	90	0.9	S1-100%	1475	5.83	83.0%	0.6	2.7	5.29	8.83	7.69
MRS20b-4	90	1.1	S1-100%	1470	7.15	84.1%	0.66	2.9	4.32	8.22	6.27
MRS20c-4	90	1.5	S1-100%	1458	9.82	85.3%	0.75	3.4	3.14	7.01	4.56

MRS Series, 6-poles, 3-phase

MRS14a-6	71	0.09	S1-100%	960	0.90	48.0%	0.48	0.56	4.69	3.57	4.91
MRS14d-6	71	0.12	S3-25%	950	1.21	54.0%	0.54	0.59	3.48	3.39	3.65
MRS18a-6	80	0.18	S1-100%	981	1.75	61.5%	0.41	1.06	6.56	5.85	8.56
MRS18b-6	80	0.25	S1-100%	974	2.45	67.6%	0.5	1.11	4.69	5.59	6.12
MRS18d-6	80	0.37	S3-60%	963	3.67	72.4%	0.61	1.23	3.13	5.04	4.09
MRS20a-6	90	0.55	S1-100%	968	5.43	80.0%	0.68	1.45	3.10	6.28	3.80
MRS20b-6	90	0.75	S1-100%	954	7.51	80.3%	0.76	1.78	2.24	5.11	2.74

For MRS14: size IEC63 on request. For MRS18 and MRS20: size IEC100 on request. Specifications 8-pole motor on request.

Ts = Starting torque
Tn = Nominal torque
Tm = Maximum torque

Is = Starting current
In = Nominal current

WATER COOLED MOTOR (TELC)

Туре	IEC	Power	Duty	n nom	T nom
	Size	[kW]	Cycle	[RPM]	[Nm]

MRSL Series, 2-poles, 3-phase

MRSL14a-2	71	0.37	51-100%	2880	1.23
MRSL14b-2	71	0.55	S1-100%	2840	1.85
MRSL14c-2	71	0.75	S1-100%	2762	2.59
MRSL18a-2	80	1.5	S1-100%	2867	5.00
MRSL18b-2	80	1.85	S1-100%	2825	6.25
MRSL18c-2	80	2.2	S1-100%	2774	7.57
MRSL20b-2	90	3	51-100%	2878	9.95
MRSL20c-2	90	4	S1-100%	2819	13.55

MRSL Series, 4-poles, 3-phase

MRSL14a-4	71	0.37	S1-100%	1421	2.49
MRSL14b-4	71	0.55	S1-100%	1370	3.83
MRSL14c-4	71	0.75	S1-100%	1278	5.60
MRSL18a-4	80	1.1	S1-100%	1416	7.42
MRSL18b-4	80	1.5	S1-100%	1369	10.46
MRSL18c-4	80	1.85	S1-100%	1301	13.58
MRSL20a-4	90	2.2	S1-100%	1441	14.58
MRSL20b-4	90	3	S1-100%	1414	20.26
MRSL20c-4	90	4	S1-100%	1364	28.00

MRSL Series, 6-poles, 3-phase

	•				
MRSL14a-6	71	0.18	S1-100%	925	1.86
MRSL14b-6	71	0.25	S1-100%	873	2.73
MRSL18a-6	80	0.75	S1-100%	920	7.78
MRSL18b-6	80	1.1	S1-100%	827	12.70
MRSL20b-6	90	1.5	S1-100%	868	16.50

Custom-made design

For MRSL14: size IEC63 on request. For MRSL18 and MRS20: size IEC100 on request. Specifications 8-pole motor on request.

WORM GEAR MOTOR

WRSH2	2	T n ⁽¹⁾ [Nm]	20	20	20	20	20	20	20	20					
		i	3.6	8.4	10.3	12.7	15	18.5	37	40					
МОТОБ	₹														
n1 [RPM]	P [W]	n2 [RPM]	389	167	136	110	93	76	38	35					
000	180	Fac. 3	3.8	8.3	9.5	12	13	16	24	27					
1400 1400 1400	250	[Nm]	5.3	11	13	17	18	22	34	38					
MOTOR	2														
n1 [RPM]	P [W]	n2 [RPM]	778	333	272	220	187	151	76	70					
000	180	F 7	1.9	4.1	4.7	6.0	6.3	7.8	12	14					
2800 2800 2800	250	[Nm]	2.6	5.7	6.6	8.3	8.8	11	17	19					
WRSH	3	T n ⁽¹⁾ [Nm]	55	80	80	80	80	80	80	80	80	80	75	70	60
		T n ⁽²⁾ [Nm]	35	50	60	60	60	70	65	65	60	55	45	45	40
		i	4.75	6.67	9.67	13.5	15	21	25	28	30	38	50	60	75
MOTOR)														
n1 [RPM]	P [W]	n2 [RPM]	295	210	145	104	93	67	56	50	47	37	28	23	19
0 0 0	180		5.0	6.7	9.3	12	13	16	18	18	21	24	26	29	31
								10	10	.0	- 1	27	20		
14 14 14	250		6.9	9.3	13	17	18	23	26	25	29	33	37	40	43
	250 370		6.9 10	9.3 14	13 19		18								
		Fat 7				17		23	26	25	29	33	37	40	43
	370	[Nm]	10	14	19	17 25	27	23	26	25 37	29 42	33 49	37 54	40 59	43 64
	370 550	[Nm]	10 15	14	19 28	17 25 37	27 41	23 33 50	26 38 56	25 37 56	29 42 63	33 49 73	37 54 81	40 59 88	43 64 96
	370 550 750	[Nm]	10 15 21	14 21 28	19 28 39	17 25 37 50	27 41 55	23 33 50 68	26 38 56 77	25 37 56 76	29 42 63	33 49 73	37 54 81	40 59 88	43 64 96
1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400 1400	370 550 750 900	[Nm]	10 15 21 25	14 21 28 34	19 28 39 46	17 25 37 50 61	27 41 55 66	23 33 50 68 81	26 38 56 77	25 37 56 76	29 42 63	33 49 73	37 54 81	40 59 88	43 64 96
1400 1400 1400 1400 1400 1400 1400 1400	370 550 750 900 1100 1500	[Nm]	10 15 21 25 30	14 21 28 34 41	19 28 39 46 57	17 25 37 50 61 74	27 41 55 66 81	23 33 50 68 81	26 38 56 77	25 37 56 76	29 42 63	33 49 73	37 54 81	40 59 88	43 64 96
	370 550 750 900 1100 1500	[Nm] n2 [RPM]	10 15 21 25 30	14 21 28 34 41	19 28 39 46 57	17 25 37 50 61 74	27 41 55 66 81	23 33 50 68 81	26 38 56 77	25 37 56 76	29 42 63	33 49 73	37 54 81	40 59 88	43 64 96
0071 0071 0071 0071 0071 0071 0071 0071	370 550 750 900 1100 1500		10 15 21 25 30 41	14 21 28 34 41 56	19 28 39 46 57 77	17 25 37 50 61 74 101	27 41 55 66 81 111	23 33 50 68 81 99	26 38 56 77 92	25 37 56 76 91	29 42 63 86	33 49 73 99	37 54 81 110	40 59 88 120	43 64 96 130
MOTOR n1 [RPM]	370 550 750 900 1100 1500		10 15 21 25 30 41	14 21 28 34 41 56	19 28 39 46 57 77	17 25 37 50 61 74 101	27 41 55 66 81 111	23 33 50 68 81 99	26 38 56 77 92	25 37 56 76 91	29 42 63 86	33 49 73 99	37 54 81 110	40 59 88 120	43 64 96 130
2800 1400 1400 1400 1400 1400 1400 1400 1	370 550 750 900 1100 1500 P [W]		10 15 21 25 30 41 589 2.5	14 21 28 34 41 56	19 28 39 46 57 77 290 4.7	17 25 37 50 61 74 101	27 41 55 66 81 111 187 6.8	23 33 50 68 81 99	26 38 56 77 92 112 9.8	25 37 56 76 91	29 42 63 86 93	33 49 73 99 74 13	37 54 81 110 56	40 59 88 120 47 15	43 64 96 130 37 16
2800 1400 1400 1400 1400 1400 1400 1400 1	370 550 750 900 1100 1500 P [W] 180 250	n2 [RPM]	10 15 21 25 30 41 589 2.5 3.5	14 21 28 34 41 56 420 3.4 4.8	19 28 39 46 57 77 290 4.7 6.6	17 25 37 50 61 74 101 207 6.3 8.7	27 41 55 66 81 111 187 6.8	23 33 50 68 81 99 133 8.5	26 38 56 77 92 112 9.8 14	25 37 56 76 91 100 9.6 13	29 42 63 86 93 11 15	33 49 73 99 74 13 18	37 54 81 110 56 14 20	40 59 88 120 47 15 21	43 64 96 130 37 16 22
2800 2800 1400 1400 1400 1400 1400 1400 1400 1	370 550 750 900 1100 1500 P [W] 180 250 370		10 15 21 25 30 41 589 2.5 3.5 5.2	14 21 28 34 41 56 420 3.4 4.8 7.1	19 28 39 46 57 77 290 4.7 6.6 9.8	17 25 37 50 61 74 101 207 6.3 8.7 13	27 41 55 66 81 111 187 6.8 9	23 33 50 68 81 99 133 8.5 12	26 38 56 77 92 112 9.8 14 20	25 37 56 76 91 100 9.6 13 20	29 42 63 86 93 11 15 22	33 49 73 99 74 13 18 26	37 54 81 110 56 14 20 30	40 59 88 120 47 15 21 32	43 64 96 130 37 16 22 32
1400 1400 1400 1400 1400 1400 1400 1400	370 550 750 900 1100 1500 P [W] 180 250 370 550	n2 [RPM]	10 15 21 25 30 41 589 2.5 3.5 5.2 7.8	14 21 28 34 41 56 420 3.4 4.8 7.1	19 28 39 46 57 77 290 4.7 6.6 9.8	17 25 37 50 61 74 101 207 6.3 8.7 13	27 41 55 66 81 111 187 6.8 9 14 21	23 33 50 68 81 99 133 8.5 12 17 26	26 38 56 77 92 112 9.8 14 20 30	25 37 56 76 91 100 9.6 13 20 29	29 42 63 86 93 11 15 22 33	33 49 73 99 74 13 18 26 39	37 54 81 110 56 14 20 30 44	40 59 88 120 47 15 21 32 47	43 64 96 130 37 16 22 32 48

⁽¹⁾ Tn is nominal output torque for 5000h. (2) Tn is nominal output torque for 15000h and allows a short incidental overload of 100%.

PLANETARY GEARBOX (PRS80)

	1 Stage					2 Sta	2 Stages							
PRS80	T n ⁽¹⁾ [Nm]	60	75	75	35	85	80	75	80	80	75	80	75	35
	i	3	4	5	8	9	12	15	16	20	25	32	40	64

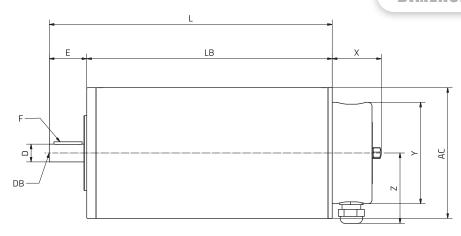
мото	R														
n1 [RPM]	P [W]	n2 [RPM]	467	350	280	175	156	117	93	88	70	56	44	35	22
000	180		3.5	4.7	5.9	9.4	10	14	17	18	23	29	37	46	74
140 140 140	250		4.9	6.5	8.2	13	14	19	24	26	32	40	51	64	103
	370	Fat 1	7.3	9.7	12	19	21	28	36	38	47	59	76	95	
	550	[Nm]	11	14	18	29	32	42	53	56	71	88	113	141	
	750		15	20	25	39	43	58	72	77	96	120	154		
14(900		18	24	29	47	52	69	87	92	115				

		3 Stages									
PRS80	T n ⁽¹⁾ [Nm]	75 80 80 75 80 75 80 75 35									
	i	60	80	100	120	160	200	256	320	512	

МОТО	MOTOR										
n1 [RPM]	P [W]	n2 [RPM]	23	18	14	12	9	7	5	4	3
<u> </u>	180		66	88	111	133	177	221	283	354	566
	250	[Nm]	92	123	153						
	370		136								

(1) Tn is nominal output torque. Tn allows a short incidental overload of 50%. Other motor speeds on request.

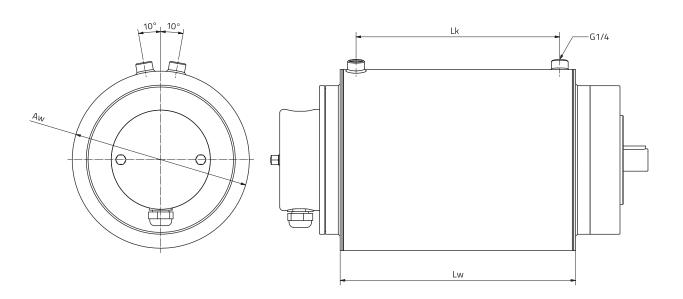
SPECIFICATIONS


PLANETARY GEARBOX (PRS120)

			1 Sta	1 Stage						2 Stages						
PRS12	0	T n ⁽¹⁾ [Nm]	75	105	130	80	140	170	150	170	170	150	170	150	80	
		i	3	4	5	8	9	12	15	16	20	25	32	40	64	
мото	R															
n1 [RPM]	P [W]	n2 [RPM]	467	350	280	175	156	117	93	88	70	56	44	35	22	
00	370		7.3	9.7	12	19	21	28	36	38	47	59	76	95	152	
14(14(550		11	14	18	29	32	42	53	56	71	88	113	141	226	
	750	[Nm]	15	20	25	39	43	58	72	77	96	120	154	192		
	900	LIVIIIJ	18	24	29	47	52	69	87	92	115	144	185	231		
	1100		22	29	36	58	63	85	106	113	141	176	226			
	1500		29	39	49	79	87	115	144	154	192	240	308			

			3 Stages								
PRS12	0	T n ⁽¹⁾ [Nm]	170	170	170	150	170	150	170	150	80
		i	60	80	100	120	160	200	256	320	512
MOTOR											
n1 [RPM]	P [W]	n2 [RPM]	23	18	14	12	9	7	5	4	3
000	370		136	182	227	273	363	454	582	727	1163
140 140 140	550	[Nm]	203	270							
	750		276								

⁽¹⁾ Tn is nominal output torque. Tn allows a short incidental overload of 50%. Other motor speeds on request.


9

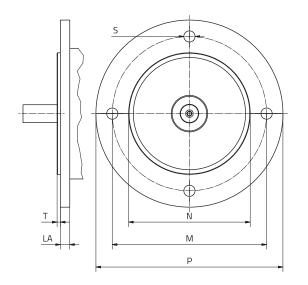
MOTOR

Туре	IEC Size	L	LB	AC Ø	D Ø	E	F	X	Y Ø	Z	DB DIN332-D	Flange	Weight [kg]
MRS14	71	239	209	114.3	14	30	5x20	53	108	75	M5	B5 B14a B14b	12 11 11.5
MRS18	80	302.5	262.5	139.7	19	40	6x30	53	108	75	M6	B5 B14a B14b	21.5 20.5 21
MRS20	90	370.5	320.5	159	24	50	8x40	53	108	75	M8	B5 B14a B14b	32.5 30 31

All dimensions are in mm. Keyway according to DIN 6885.

WATER COOLED MOTOR

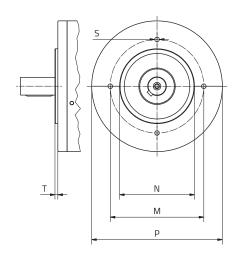
Туре	Lw	Lk	Aw Ø
MRSL14	169	135	139.7
MRSL18	217	183	159
MRSL20	252	218	193.7


All dimensions are in mm.

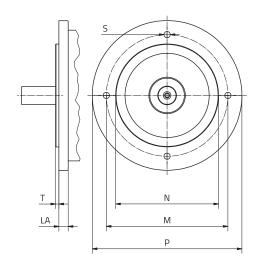
BRAKE/ENCODER

Туре	LB
MRS14	+ 88.5
MRS18	+ 88.5
MRS20	+ 95

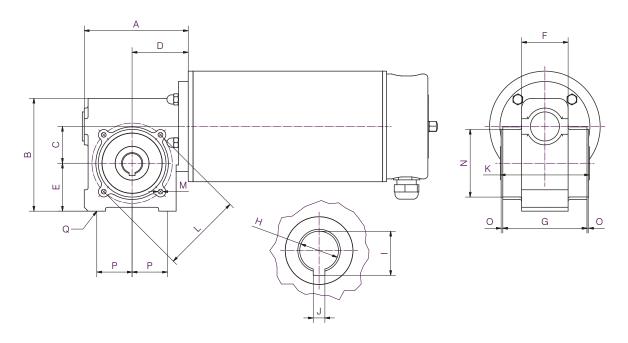
Diameter = AC. LB increases with above mentioned values.


DIMENSIONS

IEC FLANGE


B5						
IEC Size	P Ø	M Ø	N Ø	S Ø	Т	LA
71	160	130	110h6	9	3.5	9
80	200	165	130h6	12	3.5	10
90	200	165	130h6	12	3.5	10
100	250	215	180h6	15	4	14.5

All dimensions are in mm.

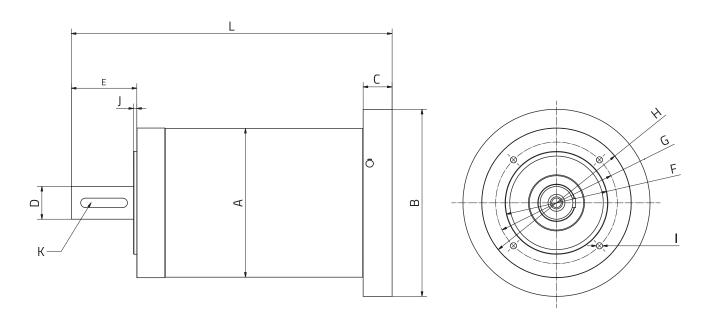

B14a						
IEC Size	P Ø	M Ø	N Ø	S Ø	T	LA
71	105	85	70h6	M6	2.5	Х
80	120	100	80h6	M6	3	Х
90	140	115	95h6	M8	3	х
100	160	130	110h6	M8	3.5	х

All dimensions are in mm.

B14b						
IEC Size	P Ø	M Ø	N Ø	S Ø	T	LA
71	140	115	95h6	M8	3	8
80	160	130	110h6	M8	3.5	8
90	160	130	110h6	M8	3.5	10
100	200	165	130h6	M10	3.5	12

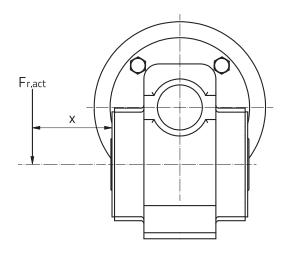
All dimensions are in mm.

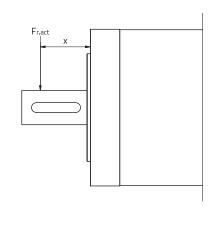
WORM GEAR MOTOR


Туре	А	В	С	D	E	F	G	H Ø	1
WRSH2	109.5	116.5	38	58	49.5	48	43.5	STD. 20	22.8
WRSH3	139	153	53	72.5	65	55	48.5	STD. 25	28.3

Туре	J	К	L Ø	M	N Ø	0	Р	Q	Weight [kg]
WRSH2	6	92	83	M6	70h6	1.75	36.5	M8	4
WRSH3	8	102	95	M8	80h6	2.5	40	M10	7

All dimensions are in mm. Keyway according to DIN 6885.


DIMENSIONS



PLANETARY GEARBOX

Туре	i	L	A Ø	B Ø	С	D Ø	Е	F Ø	G Ø	H Ø	I	J	К	Input Flange	Weight [kg]
PRS80	3 8 9 64 60 512	216.5 234 251.5	101.5	160	24	20	40	70	85	105	M8	2.5	6x30	IEC 71 B14b IEC 80 B14b	8 9 10
PRS120	3 8 9 64 60 512	286.5 314 341.5	159	200	31	35	70	110	130	160	M8	3.5	10x50	IEC 80 B5	20 23 26

All dimensions are in mm. Keyway according to DIN 6885.

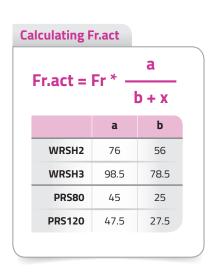
MAXIMUM RADIAL FORCE

RPM	10	25	40	55	70	85	100	200	300	400	500	600	700	800
WRSH2	2.84	2.02	1.69	1.5	1.36	1.26	1.18	0.89	0.74	0.65	0.59	0.54	0.5	0.47
WRSH3	5.34	3.85	3.25	2.89	2.65	2.46	2.32	1.78	1.51	1.35	1.23	1.14	1.07	1.01
PRS80	7.50	5.52	4.72	4.25	3.92	3.67	3.48	2.76	2.41	2.19	2.04	1.91	1.82	1.74
PRS120	13.78	10.15	8.68	7.81	7.20	6.75	6.39	5.08	4.43	4.03	3.74	3.52	3.34	3.20

Values are in kN, at 20mm distance.

Fa = 0.25 * Fr with combined Fa/Fr OR 0.5 * Fr without Fr.

Radial and Axial forces


The values listed in the table are calculated for speeds between 10 and 800 r / min. The maximum load allowed is for a lifecycle of 15000 hours and should not be exceeded.

Radial Load (Fr)

When calculating the radial load, the point of application for the radial force Fr is taken at the point 20 mm from the unit (see figure). When the radial force applies on the shaft from a different distance, the actual radial force has to be calculated with the highlighted formula.

Axial load (Fa)

The allowed value for the axial load Fa is 0.25 * Fr when the force is in combination with a radial load Fr and the allowed value is 0.5 * without radial load.

